Please rotate your device to landscape mode for a better experience.
Connexion

Marlies
GP: 40 | W: 18 | L: 18 | OTL: 4 | P: 40
GF: 81 | GA: 78 | PP%: 26.90% | PK%: 75.00%
DG: Eric Gamache | Morale : 62 | Moyenne d’équipe : 64

Centre de jeu
Marlies
18-18-4, 40pts
2
5 Penguins
19-16-5, 43pts
Team Stats
L2SéquenceW2
9-9-2Fiche domicile11-7-2
9-9-2Fiche domicile8-9-3
3-6-1Derniers 10 matchs5-4-1
2.03Buts par match 1.78
1.95Buts contre par match 1.88
26.90%Pourcentage en avantage numérique19.32%
75.00%Pourcentage en désavantage numérique75.54%
Checkers
22-14-4, 48pts
4
0 Marlies
18-18-4, 40pts
Team Stats
W1SéquenceL2
10-8-2Fiche domicile9-9-2
12-6-2Fiche domicile9-9-2
7-1-2Derniers 10 matchs3-6-1
1.83Buts par match 2.03
1.75Buts contre par match 1.95
21.72%Pourcentage en avantage numérique26.90%
78.61%Pourcentage en désavantage numérique75.00%
Meneurs d'équipe

Statistiques d’équipe
Buts pour
81
2.03 GFG
Tirs pour
620
15.50 Avg
Pourcentage en avantage numérique
26.9%
53 GF
Début de zone offensive
34.0%
Buts contre
78
1.95 GAA
Tirs contre
621
15.53 Avg
Pourcentage en désavantage numérique
75.0%%
45 GA
Début de la zone défensive
32.8%
Informations de l'équipe

Directeur généralEric Gamache
EntraîneurIan Lapierre
DivisionNord
ConférenceConference Est
Capitaine
Assistant #1
Assistant #2Vinni Lettieri


Informations de l’aréna

Capacité8,000
Assistance0
Billets de saison1,600


Informations de la formation

Équipe Pro8
Équipe Mineure23
Limite contact 31 / 250
Espoirs62


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire
1Mason Morelli0X100.007674796974626456504662635944446120630281775,000$
2Nolan Allan (R)0X100.007944886973667861255247782547476265690213825,000$
3Frederic Brunet (R)0X100.007874876774788650254541633944445565660213860,000$
4David Jiricek0X100.007544857177596261255249672550506065650202918,333$
5Michael Callahan (R)0X100.006582876775647862253948782545455920650251775,000$
6Corey Schueneman (R)0X100.007570886770758250254341623947475520640291775,000$
Rayé
1Jakub Vrana0X100.006542918171565962366174596969716955660281775,000$
MOYENNE D’ÉQUIPE100.00736186707366735730485267404950604465
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien #CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPÂgeContratSalaire
1Drew Commesso (R)0100.00585366706063566363623044445975550223925,000$
Rayé
MOYENNE D’ÉQUIPE100.0058536670606356636362304444597555
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Ian Lapierre55555555555555CAN51620,000,000$


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Pays Recrue Poids Taille Non-échange Disponible pour échange Acquis Par Date de la Dernière Transaction Ballotage forcé Waiver Possible Contrat Date du Signature du Contrat Forcer UFA Rappel d'urgence Type Salaire actuel Salaire restantPlafond salarial Plafond salarial restant Exclus du plafond salarial Salaire année 2Salaire année 3Salaire année 4Salaire année 5Salaire année 6Salaire année 7Salaire année 8Salaire année 9Salaire année 10Plafond salarial année 2Plafond salarial année 3Plafond salarial année 4Plafond salarial année 5Plafond salarial année 6Plafond salarial année 7Plafond salarial année 8Plafond salarial année 9Plafond salarial année 10Non-échange année 2Non-échange année 3Non-échange année 4Non-échange année 5Non-échange année 6Non-échange année 7Non-échange année 8Non-échange année 9Non-échange année 10Lien
Corey SchuenemanMarlies (TOR)D291995-09-02USAYes197 Lbs5 ft11NoNoN/ANoYes1FalseFalsePro & Farm775,000$0$0$No---------------------------Lien / Lien NHL
David JiricekMarlies (TOR)D202003-11-28CZENo204 Lbs6 ft4NoNoN/ANoNo2FalseFalsePro & Farm918,333$0$0$No918,333$--------918,333$--------No--------Lien / Lien NHL
Drew CommessoMarlies (TOR)G222002-07-19USAYes180 Lbs6 ft2NoNoN/ANoNo3FalseFalsePro & Farm925,000$0$0$No925,000$925,000$-------925,000$925,000$-------NoNo-------Lien
Frederic BrunetMarlies (TOR)D212003-08-21CANYes196 Lbs6 ft3NoNoN/ANoNo3FalseFalseFarm Only860,000$0$0$No860,000$860,000$-------860,000$860,000$-------NoNo-------Lien
Jakub VranaMarlies (TOR)LW281996-02-28CZENo197 Lbs6 ft0NoNoN/ANoYes1FalseFalsePro & Farm775,000$0$0$No---------------------------Lien / Lien NHL
Mason MorelliMarlies (TOR)LW281996-02-01USANo208 Lbs6 ft0NoNoN/ANoYes1FalseFalsePro & Farm775,000$0$0$No---------------------------Lien / Lien NHL
Michael CallahanMarlies (TOR)D251999-09-23USAYes199 Lbs6 ft2NoNoAssign ManuallyNoYes1FalseFalsePro & Farm775,000$0$0$No---------------------------Lien
Nolan AllanMarlies (TOR)D212003-04-28CANYes195 Lbs6 ft2NoNoN/ANoNo3FalseFalseFarm Only825,000$0$0$No825,000$825,000$-------825,000$825,000$-------NoNo-------Lien
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
824.25197 Lbs6 ft21.88828,542$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
140122
230122
320122
410122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
140122
230122
320122
410122
Attaque en avantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
160122
240122
Défense en avantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
160122
240122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
160122
240122
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
160122
240122
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
16012260122
24012240122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
160122
240122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
160122
240122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
, , ,
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
, , ,
Tirs de pénalité
, , , ,
Gardien
#1 : , #2 :
Lignes d’attaque personnalisées en prolongation
, , , , , , , , ,
Lignes de défense personnalisées en prolongation
, , , ,


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals1010000003-31010000003-30000000000000.00000000825436813121225732194139400.00%4250.00%030456453.90%26854349.36%27955150.64%970690974284485241
2Americans20101000330100010002111010000012-120.50035800825436281312122573217619239222.22%8362.50%030456453.90%26854349.36%27955150.64%970690974284485241
3Barracuda10001000431000000000001000100043121.00048120082543621131212257321936393133.33%4325.00%030456453.90%26854349.36%27955150.64%970690974284485241
4Bears1000000123-11000000123-10000000000010.5002460082543621131212257321745564125.00%5180.00%030456453.90%26854349.36%27955150.64%970690974284485241
5Bruins1000010023-11000010023-10000000000010.500246008254361413121225732831611100.00%3166.67%130456453.90%26854349.36%27955150.64%970690974284485241
6Checkers1010000004-41010000004-40000000000000.0000000082543614131212257321971511300.00%5180.00%030456453.90%26854349.36%27955150.64%970690974284485241
7Comets211000003211010000012-11100000020220.500369018254363013121225732326951710330.00%15193.33%030456453.90%26854349.36%27955150.64%970690974284485241
8Condors1010000023-1000000000001010000023-100.00024600825436201312122573215326105120.00%30100.00%030456453.90%26854349.36%27955150.64%970690974284485241
9Crunch321000001147110000003032110000084440.667112233028254364113121225732351418326221045.45%14285.71%030456453.90%26854349.36%27955150.64%970690974284485241
10Devils2010010048-41010000014-31000010034-110.250471100825436341312122573233727199333.33%11463.64%030456453.90%26854349.36%27955150.64%970690974284485241
11Eagles1000000112-1000000000001000000112-110.500123008254361813121225732125896116.67%4175.00%030456453.90%26854349.36%27955150.64%970690974284485241
12Griffins11000000303000000000001100000030321.0003690182543624131212257321431598337.50%50100.00%030456453.90%26854349.36%27955150.64%970690974284485241
13Gulls10001000101000000000001000100010121.00012301825436171312122573292813600.00%40100.00%130456453.90%26854349.36%27955150.64%970690974284485241
14Heat2020000035-2000000000002020000035-200.0003690082543627131212257323110232213323.08%9366.67%030456453.90%26854349.36%27955150.64%970690974284485241
15Hockey Club 1010000001-11010000001-10000000000000.000000008254361213121225732162811500.00%40100.00%030456453.90%26854349.36%27955150.64%970690974284485241
16IceHogs11000000211000000000001100000021121.0002460082543616131212257321458104250.00%4175.00%030456453.90%26854349.36%27955150.64%970690974284485241
17Monsters211000007431010000034-11100000040420.50071421018254363913121225732341126118112.50%8275.00%030456453.90%26854349.36%27955150.64%970690974284485241
18Moose1010000023-1000000000001010000023-100.00024600825436151312122573218810282150.00%6266.67%030456453.90%26854349.36%27955150.64%970690974284485241
19Penguins1010000025-3000000000001010000025-300.00024600825436151312122573226176768225.00%6266.67%030456453.90%26854349.36%27955150.64%970690974284485241
20Phantoms11000000321110000003210000000000021.000358008254369131212257321591586350.00%5180.00%030456453.90%26854349.36%27955150.64%970690974284485241
21Rampage1010000002-21010000002-20000000000000.000000008254369131212257323416299300.00%3166.67%030456453.90%26854349.36%27955150.64%970690974284485241
22Reign11000000615110000006150000000000021.000611170082543616131212257321673745480.00%6183.33%230456453.90%26854349.36%27955150.64%970690974284485241
23Rocket201000104401010000001-11000001043120.5004610008254363213121225732291016149222.22%8362.50%030456453.90%26854349.36%27955150.64%970690974284485241
24Sagnéens1010000001-11010000001-10000000000000.0000000082543611131212257321017712400.00%6183.33%030456453.90%26854349.36%27955150.64%970690974284485241
25Senators21100000440110000003121010000013-220.5004812008254363713121225732236171610220.00%6433.33%030456453.90%26854349.36%27955150.64%970690974284485241
26Sound Tigers10000010211000000000001000001021121.0002240082543616131212257322311882150.00%4175.00%030456453.90%26854349.36%27955150.64%970690974284485241
27Stars11000000321110000003210000000000021.00036900825436171312122573214658148112.50%4175.00%030456453.90%26854349.36%27955150.64%970690974284485241
28Thunderbirds11000000211110000002110000000000021.0002460082543612131212257321041395240.00%4175.00%030456453.90%26854349.36%27955150.64%970690974284485241
29Wild11000000211110000002110000000000021.0002460082543613131212257321652287228.57%6183.33%030456453.90%26854349.36%27955150.64%970690974284485241
30Wolf Pack11000000312110000003120000000000021.00036900825436221312122573223591156233.33%30100.00%030456453.90%26854349.36%27955150.64%970690974284485241
31Wolves1010000001-1000000000001010000001-100.0000000082543612131212257322051611200.00%3166.67%030456453.90%26854349.36%27955150.64%970690974284485241
Total40131803222817832089011013638-220590212145405400.50081154235068254366201312122573262119511863681975326.90%1804575.00%430456453.90%26854349.36%27955150.64%970690974284485241
_Since Last GM Reset40131803222817832089011013638-220590212145405400.50081154235068254366201312122573262119511863681975326.90%1804575.00%430456453.90%26854349.36%27955150.64%970690974284485241
_Vs Conference238901221524931355011012527-210340012027225250.543529714904825436364131212257323441106732001123430.36%1052774.29%130456453.90%26854349.36%27955150.64%970690974284485241
_Vs Division1057011102328-5624010001218-64330011011101150.75023426501825436170131212257321906131484461328.26%471274.47%030456453.90%26854349.36%27955150.64%970690974284485241

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
4040L281154235620621195118636806
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
40131832228178
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
208911013638
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
205921214540
Derniers 10 matchs
WLOTWOTL SOWSOL
360100
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
1975326.90%1804575.00%4
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
13121225732825436
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
30456453.90%26854349.36%27955150.64%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
970690974284485241


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
1 - 2025-10-053Marlies0Heat1LSommaire du match
2 - 2025-10-0622Stars2Marlies3WSommaire du match
4 - 2025-10-0837Marlies2Moose3LSommaire du match
5 - 2025-10-0951Monsters4Marlies3LSommaire du match
6 - 2025-10-1075Marlies3Crunch4LSommaire du match
7 - 2025-10-1187Thunderbirds1Marlies2WSommaire du match
9 - 2025-10-13104Marlies4Rocket3WXXSommaire du match
11 - 2025-10-15120Marlies2IceHogs1WSommaire du match
12 - 2025-10-16131Hockey Club 1Marlies0LSommaire du match
14 - 2025-10-18151Bears3Marlies2LXXSommaire du match
16 - 2025-10-20165Marlies5Crunch0WSommaire du match
17 - 2025-10-21180Marlies2Sound Tigers1WXXSommaire du match
18 - 2025-10-22194Sagnéens1Marlies0LSommaire du match
19 - 2025-10-23215Senators1Marlies3WSommaire du match
20 - 2025-10-24231Marlies4Barracuda3WXSommaire du match
21 - 2025-10-25241Marlies3Heat4LSommaire du match
23 - 2025-10-27255Wolf Pack1Marlies3WSommaire du match
25 - 2025-10-29273Rampage2Marlies0LSommaire du match
26 - 2025-10-30296Marlies4Monsters0WSommaire du match
27 - 2025-10-31310Marlies1Eagles2LXXSommaire du match
28 - 2025-11-01320Crunch0Marlies3WSommaire du match
29 - 2025-11-02336Marlies3Devils4LXSommaire du match
30 - 2025-11-03350Devils4Marlies1LSommaire du match
31 - 2025-11-04371Wild1Marlies2WSommaire du match
33 - 2025-11-06387Marlies2Condors3LSommaire du match
34 - 2025-11-07401Reign1Marlies6WSommaire du match
35 - 2025-11-08420Marlies1Americans2LSommaire du match
36 - 2025-11-09427Marlies0Wolves1LSommaire du match
37 - 2025-11-10441Phantoms2Marlies3WSommaire du match
39 - 2025-11-12467Americans1Marlies2WXSommaire du match
40 - 2025-11-13486Bruins3Marlies2LXSommaire du match
41 - 2025-11-14493Marlies3Griffins0WSommaire du match
42 - 2025-11-15509Marlies2Comets0WSommaire du match
43 - 2025-11-16532Admirals3Marlies0LSommaire du match
45 - 2025-11-18544Marlies1Senators3LSommaire du match
46 - 2025-11-19560Comets2Marlies1LSommaire du match
49 - 2025-11-22590Rocket1Marlies0LSommaire du match
50 - 2025-11-23597Marlies1Gulls0WXSommaire du match
51 - 2025-11-24607Marlies2Penguins5LSommaire du match
53 - 2025-11-26625Checkers4Marlies0LSommaire du match



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité50003000
Prix des billets3515
Assistance00
Assistance PCT0.00%0.00%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
0 0 - 0.00% 0$0$8000110

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursPlafond Salariale total des joueursSalaire des entraineurs
5,853,320$ 6,628,333$ 6,628,333$ 20,000,000$0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
0$ 5,853,320$ 0 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
0$ 0 120,515$ 0$




Marlies Leaders statistiques des joueurs (saison régulière)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Marlies Leaders des statistiques des gardiens (saison régulière)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Marlies Statistiques de l'Équipe de Carrière

TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Marlies Leaders statistiques des joueurs (séries éliminatoires)

# Nom du joueur GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Marlies Leaders des statistiques des gardiens (séries éliminatoires)

# Nom du gardien GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA